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Abstract

With the advent of new missions to probe spectral distortions of the cosmic microwave back-

ground with unprecedented precision, the study of theoretical predictions of these signals be-

comes a promising avenue to test our description of the early Universe.

To explore new constraints on dark matter and inflation based on alternative models beyond

to cosmological standard model, we compute the spectral distortions of two models, reveal-

ing interesting features that maybe compatible with Planck data and future missions like the

Primordial Inflation Explorer (PIXIE). First, for the dark matter model we used a QCD dark

matter scenario that is a model characterized by a phase transition in the early universe. Sec-

ond, for the inflation model we used the axion monodromy, whose main feature is a potential

with oscillations.

In the QCD dark matter scenario we compute µ and y distortions from values of the free

parameters of the model, the magnitude of the spectral distortions are within the range of

PIXIE. On the other hand, the framework of axion monodromy, the predicted distortions are

up to 10% larger than the signals obtained from the fiducial ΛCDM model and distinguishable.

However, contrasting with the predictions of the simplest power-law inflationary potentials

challenges the falsifiability of axion monodromy as it would require to reduce at least 100

times the current forecast error of the PIXIE satellite, which should be possible in some surveys

setups. Both models show interesting results that could be measurable in the future.



Notation and Conventions

Throughout this thesis, we have systematically used the metric convection (−+++), and we

follow the convection of [1]. In the Minkowski limit, it corresponds to

ηµν = diag(−1,1,1,1) , (1)

and we use Einstein’s summation convention where repeated indices are summed over. We use

Greek letters for spacetimes indices, µ = 0, 1 , 2, 3, and Latin letters for spatial indices, i = 1,

2, 3. Spatial vectors are denoted by x and their components by xi with magnitudes x = |x|. For

to raise and lower indices on four-vectors (and on general tensors), we used

Aµ = gµνAν and Aµ = gµνAν , (2)

where gµν is the inverse metric defined by

gµλ gλ µ = δ
µ

ν =

1 , µ = ν

0 , µ ̸= ν

 .

Derivatives with respect to physical time t are denoted as d f/dt = ḟ and with respect to con-

formal time η are given by d f/dη = a ḟ , where a = a(t) is the scale factor. We work in natural

units, for which

G = ℏ= c = 1 , (3)

and in chapter 2 and 5, we work in units where reduce Planck mas is Mpl = mpl/
√

8π = 1. Where

mpl is the 4-th dimensional Planck mass.



Chapter 1

Introduction

1.1 Motivation

In the last decade has been an exponential increase in obtaining high-precision from cosmo-

logical observations. It has also been a considerable increase in the number of techniques

available to probe and validate such data. This has contributed to being able to establish the

standard model of cosmology. Observations of the Universe, such as type Ia supernovae and

Cosmic Microwave Background (CMB) radiation have shown that the Universe: is spatially

flat, homogeneous and isotropic on large scales, that the 70% of the Universe and driving

its accelerated expansion, and the 26% of the Universe is composed of a massive enough to

clustering surrounding to the baryonic matter at the large scales. The Λ as dark energy, the

DM, along with the baryons (filling the remaining 4% of the Universe) are components of

the ΛCDM model, which has been consolidated at different scales and regimes, such as the

CMB [2; 3; 4], galaxy and quasar surveys [5; 6; 7; 8; 9], lensing probes [10] and supernovae

catalogs [11]. Despite its success, the ΛCDM model has fundamental caveats explaining the

nature of dark matter and dark energy. Several observations are consistent with the predictions

of the standard cosmological model, ΛCDM. However, three main caveats are present within

the model. First, it predicts steeply cusped profiles for the dark matter distribution in galaxies

[12], the number of small satellite galaxies appears to be fewer than predictions, this problem

is called missing satellites [13; 14; 15]. Third, there is a tension between local and cosmolog-
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ical determinations of the Hubble constant H0 [4; 5; 6; 7; 8; 9; 11]. It was just recently that

some of this cosmological problem have been approached by spectral distortions (SD) [16].

In the early Universe, photons and baryons are tightly coupled, behaving as a single vis-

cous fluid close to thermal equilibrium due to Compton scattering, Bremsstrahlung scattering,

and double Compton scattering, processes that isotropize the photon-baryon fluid. However,

early energy injection to the baryon-photon fluid can disrupt thermal equilibrium, causing the

CMB to experience small departures from the blackbody distribution. These deviations are

known as SD and are sensitive to any energy injection to the CMB at early epochs. CMB SD

complement the anisotropy CMB observations and provide a new benchmark to test standard

and non-standard cosmological scenarios at small scales. One mechanism in the canonical

cosmological model that injects energy is Silk damping [17], which damps acoustic waves

smaller than the sound horizon after the perturbation enters the horizon. Through this pro-

cess, the energy stored at small scales in the radiation fluid is redistributed to larger scales

resulting in SD [16; 18; 19; 20; 21]. The thermal diffusion mechanism results in an increase

in the average photon temperature. The emerging SD are the mixture of blackbody spectra

from regions with different temperatures [22; 23], and their amplitude is proportional to the

square of the average temperature perturbations in the photon field [18; 24; 25]. The damping

of modes over the wavenumber interval 50 Mpc−1 ≲ k ≲ 104 Mpc−1 (equivalent to redshifts

5×104 ≲ z ≲ 2×106) dissipate their energy while creating a non-zero chemical potential cre-

ating µ SD, and the damping modes with k < 50 Mpc−1 (z ≲ 104) results in a so-called y SD,

also related to the (thermal and kinematic) Sunyaev-Zeldovich (SZ) effect [24]. Many other

standard processes can also contribute to produce SD: the radiation during reionization, super-

nova feedback and structure formation shocks heat the intergalactic medium at z ≲ 10, leading

to a partial up-scattering of CMB photons, causing y SD. Adiabatic cooling of ordinary mat-

ter continuously extracts energy from CMB photon bath leading to another small SD depends

on baryon density and helium abundance. The recobination process is associated with the

emission of photons in free-bound and bound-bound transitions of hydrogen and helium, this

causes a smal distortion of the CMB [16; 20; 26; 27; 28; 29; 30]. Various non-standard mech-

anisms induce SD, such as decay and annihilation of relic particles, evaporation of primordial
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black holes, primordial magnetic fields, and cosmic strings, see e.g, [31; 32; 33; 34].

The SD were tightly constrained in 1996 by COBE/FIRAS to |µ| ≤ 9× 10−5 and |y| ≤

1.5×10−5 (95% C.L.) [35]. Since models predict typically smaller SD, greater experimental

precision had to be awaited to resume research on SD. Fortunately, new experimental missions,

such as PIXIE and its enhanced version Super-PIXIE will soon explore SD with expected

standard errors σ(µ)≃ 3×10−8,σ(y)≃ 3.4×10−9 [36] and σ(µ)≃ 7.7×10−9,σ(y)≃ 1.6×

10−9 [32; 37], respectively. Moreover, there even exist proposals of alternative configurations

of PIXIE with 1000 times improved sensitivity to achieve σ(µ) = 1.5× 10−11 and σ(y) =

1.2×10−12 (68% C.L.) [38]. Such sensitivity will be instrumental in falsifying relic decaying

dark matter and inflationary models.

In this thesis we are hence driven to provide precise descriptions of the SD features, first

we investigated a family of models called QCD dark matter, where unstable dark particles are

created, i.e. dark meson, that decay after the confinement scale and deposit a fraction of their

energy, into the Standard Model (SM) photons through a coupling of the SM and the dark

sector, we calculated the SD signal produced for this mechanism. In the second work, we

explored new constraints on inflationary models based on axion monodromy while aiming at

falsifying this scenario, we compute the spectral distortions predicted by this model.

1.2 Organization of this thesis

We organize this work as follows. In chapter 2 a brief review of the cosmological background

is presented, followed in chapter 3 by an overview of theory of thermalization problem and

CMB SD. Using these elements, in chapter 4 the SD are computed and the results are discussed

for the QCD dark matter, and in chapter 5 the SD for primordial small-scale perturbation from

axion monodromy are computed, these last chapters are the main result of our thesis. Finally,

in chapter 6 a brief discussion of our results and outlook is given.

Numerical calculations and the respective plots were obtained with the help of routines

developed in Phython 3. Partial results presented in this thesis have been published in the

following paper:
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• R. Henriquez-Ortiz, J. Mastache and S. Ramos-Sanchez, Spectral distortions from axion

monodromy inflation, JCAP 08 (2022) 054, [arXiv:2206.07719]



Chapter 2

Cosmological background

2.1 Friedmann Robertson Walker model

On average, in the Universe at large scales, the clumpy distribution of galaxies is homogeneous

and isotropic. As a first approximation, the Universe can be assumed to be homogeneous and

isotropic, this is known as the Cosmological principle. The current best theory for the descrip-

tion of the Universe at large scales is the general theory of relativity (GR), which provides

a description of the gravitational phenomena as a geometric property of the space-time. The

curvature in the space-time in GR is described by a fundamental quantity, the metric, which

describes the geometry of a manifold in four dimensions, three of space and one of time. The

pseudo-distance between two points in the space-time ds2 is given by

ds2 =
3

∑
µ,ν=0

gµνdxµdxν = gµνdxµdxν , (2.1)

where ds is invariant under a change of coordinate system and the path of a light ray is given

by ds = 0, the indices µ and ν run over 0,1,2,3. The time coordinate is x0 and x1, x2 and x3

are the three spatial coordinates; and gµν is a covariant symmetric tensor named the metric

tensor of the space–time geometry of the Universe.

A particle moves in such a way that the integral along its path is stationary

δ

∫
path

ds = 0 , (2.2)
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from eq.(2.1) into eq.(2.2), is obtained the path of a free particle, which is called a geodesic,

can be described by
d2xi

ds2 +Γ
i
kl

dsk

dt
dsl

dt
= 0 , (2.3)

where the Christoffel symbols are

Γ
i
kl =

1
2

gim
[

∂gmk

∂xl +
∂gml

∂xk −
∂gkl

∂xm

]
, (2.4)

and

gimgmk = δ
i
k , (2.5)

where δ i
k is the Kronecker delta, which, if i = k, is unity and otherwise zero. In GR all equa-

tions are tensor equations. A general tensor is a quantity which transforms as follows when

coordinates are changed from xi to x
′i

A
′kl···
pq··· =

∂x
′k

∂xm
∂x
′l

∂xn · · ·
∂xr

∂x′p
∂xs

∂x′q
· · ·Amn···

rs··· . (2.6)

The upper indices are contravariant and the lower are covariant. In GR the energy-momentum

tensor Tµν describes the matter distribution, we can write in tensorial formulation the equiva-

lence of conservation laws of mass, energy, and momentum

∂Tµν

∂xν
= 0 , (2.7)

e.g. in a perfect fluid approximation, the energy-momentum tensor is

Tµν = (ρ +P)UµUν −Pgµν , (2.8)

where ρ and P are the energy density and the pressure in the rest frame of the fluid, and Uµ

and Uν are the fluid four-velocity relative to a comoving observer. The properties of curved

spaces are codified in the Riemann curvature tensor through the Christoffel symbols

Ri
klm =

∂Γi
km

∂xi −
∂Γi

kl
∂xm +Γ

i
nlΓ

n
km−Γ

i
nmΓ

n
kl . (2.9)
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From the Riemann tensor, one can form the Ricci tensor

Rik = Rl
ilk , (2.10)

is the Ricci scalar that defines the scalar curvature R as

R = gikRik . (2.11)

From eq.(2.10) and eq.(2.11), we can introduce the cosmological constant Λ, the Einstein

tensor is defined

Gµν ≡ Rµν −
1
2

gµνR−Λgµν = 8πTµν . (2.12)

The eq.(2.12) relates the Einstein tensor Gµν to the energy-momentum tensor Tµν . To de-

scribing our Universe in a good approximation we need a manifold at any given time, that

fulfills the cosmological principle. The Friedmann Robertson Walker (FRW) metric, for an

expanding Universe, is the most general space-time metric describing a Universe in which the

cosmological principle is fulfilled [39]

gµν =



−1 0 0 0

0 a2(t) 0 0

0 0 a2(t) 0

0 0 0 a2(t)


. (2.13)

Where a(t) is the scale factor. For a homogeneous and isotropic perfect fluid with rest-mass

energy density ρ and pressure P, the stress–energy tensor has the form

T µ

ν = gµλ Tλν =



−ρ(t) 0 0 0

0 P(t) 0 0

0 0 P(t) 0

0 0 0 P(t)


. (2.14)

The solutions of the eq.(2.12) with the FRW metric eq.(2.13) and eq.(2.14) are the Friedmann
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cosmological equations

H2 =
8π

3
ρ− k

a2 , (2.15a)

ä
a
=−4π

3
(ρ +3P) , (2.15b)

where k is the curvature parameter, H(t) = ȧ/a is the Hubble parameter. A combination of

eqs.(2.15) can be rewritten only in term of H, ρ y P. This equation describes energy conser-

vation in the cosmological context

ρ̇ =−3H (ρ +P) , (2.16)

eq.(2.16) also could be gotten from the covariant derivative of Tµν . All cosmological param-

eters evaluated today are denoted with subindex 0, for instance, from eq.(2.15) for k = 0, we

have

H2(t = 0) = H2
0 =

8π

3
ρ0 =

8π

3
ρcrit,0 , (2.17)

where ρ0 is the sum from all contributions to the energy density in the Universe at the present

time, ρcrit,0 ≡ 3H2
0/8π is the critical density, and indicates the mean density of matter that is

required for gravity to halt the expansion of the Universe, and H0 is the Hubble parameter

today (Hubble constant). The densities of the ith component is normalized with ρcrit,0

Ωi,0 =
ρi,0

ρcrit,0
. (2.18)

If the curvature term is taken as k ̸= 0, we can define the curvature energy density

ρk,0 =−
3

8πG
k
a2

0
. (2.19)

The Universe is composed of baryonic matter, dark matter, photons, neutrinos, and dark en-

ergy. In the standard cosmological model dark matter is considered to be cold, this refers a

kind of dark particle that interacting weakly with the standard particles, and the dark energy to

be a cosmological constant, therefore, the standard model is ΛCDM model. The Planck mis-
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Parameter Meaning Value Cite
ρcrit,0 critical density (8.62±0.12)×10−27 kg m−3 [1]
Ωr,0 radiation parameter 8.99×10−5 [1]
Ωγ ,0 photon parameter 5.35×10−5 [1]
Ων ,0 neutrinos parameter < 0.003 [1]

Ωb,0h2 baryon parameter 0.02242±0.00014 [40]
Ωm,0h2 matter parameter 0.14240±0.00087 [40]
ΩΛ,0 dark energy parameter 0.6889±0.0056 [40]
Ωk,0 spatial curvature 0.001±0.002 [40]

Table 2.1: Observational Values of cosmology parameters, which it has adopted the
ΛCDM model with a good fit to the observational data, and these are in agree to the Uni-
verse spatially flat with contains radiation, matter, and a cosmological constant. Here the
Hubble constant is taken as H0 = 67.66±0.42 km/s/Mpc and h = H0/(100 km/s/Mpc)
[40].

sion has provided the observational values for the cosmological parameter Ω (see table 2.1).

The geometry of the space can be closed (k = 1), flat (k = 0) or open (k =−1) depending

on value of the density parameter. Nowadays, the Universe is considered to be flat due to the

constraints given by the observation on the curvature Ωk,0, that is equivalent to k ≈ 0, from

sum in eq.(2.20)

∑
i

Ωi,0 = Ωr,0 +Ωm,0 +ΩΛ,0 +Ωk,0 = Ω0 +Ωk,0 = 1 , (2.20)

where Ω0≡Ωr,0+Ωm,0+ΩΛ,0. The energy of the photon evolves in reverse of the scale factor

due to the expansion of the Universe. Therefore, it is useful to introduce another variable

related to the expansion parameter, which is directly observable from the instruments; this is

the redshift z, many of the relevant formulas in cosmology are very simple when are expressed

in terms of redshift. For a luminous source, e.g. a distance galaxy, the redshift is defined as

z =
λ0−λe

λe
with a =

1
1+ z

, (2.21)

where λ0 is the wavelength of the radiation from the source observed at O (which we take as

the origin of our coordinate system) at time t0 and emitted by the source at an earlier time te.

The relationship between ρ and P is known as the equation of state, where P depends only
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on ρ in the case of the perfect fluid. In the early Universe, the different components of the

Universe can be treated in a good approximation as a perfect fluid with an equation of state

P = wρ , (2.22)

where the parameter w is a constant in the range 0 ≤ w ≤ 1. The case with w = 0 represents

dust (pressureless material), this is a good approximation to the behavior of any non-relativistic

fluid. On the other hand, a fluid that is non-degenerate and ultrarelativistic in thermal equilib-

rium for an equation of state with w = 1/3, is the case for a gas of photons or neutrinos. Notice

the peculiar case which w =−1 in eq.(2.22), is for a perfect fluid equivalent of a cosmological

constant [41].

The solutions for ρ(t) for every component as function of the redshift can be gotten from

eq.(2.16) assumed an adiabatic expansion of the Universe

ρm = ρm,0(1+ z)3 , (2.23)

for non-relativistic matter, for radiation and relativistic matter

ρr = ρr,0(1+ z)4 , (2.24)

and, for the dark energy density

ρΛ = ρΛ,0 . (2.25)

where ρm,0, ρr,0 and ρΛ,0 are the energy density of matter, radiation and dark energy today,

respectively. With a cosmological constant, the total density of the Universe scales is

ρ(z) = ρΛ0 +ρm0(1+ z)3 +ρr0(1+ z)4 , (2.26)

or in therm of Ω using eq.(2.18)

Ω(z) = ΩΛ0 +Ωm0(1+ z)3 +Ωr0(1+ z)4 . (2.27)



2.2 The Cosmic Microwave Background Radiation 23

Figure 2.1: Plot showing the evolution of the energy densities of the Universe’s main
constituents. At high redshift, the radiation dominates (red curve), at middle redshift matter
dominates (black curve) and later redshift dark energy is dominating (blue curve). Figure
was plotted from data gotten with CLASS code [42]. Here, the values of zeq and zCMB are
taken of table 2.2.

Integrating the Friedmann equation, we obtain a relation between time and scale factor

H0t =
∫ a

0

da√
ΩΛ,0 +Ωm0a−3 +Ωr0a−4

. (2.28)

2.2 The Cosmic Microwave Background Radiation

The Big Bang theory of cosmology starts with the idea that the Universe at the beginning

was ultra-energetic, smaller than it is today, and the pressure of radiation was the most impor-

tant component of the energy density. During the radiation epoch, no neutral atoms had yet

been formed. Free electrons, protons, and photons with relativistic velocities are the principal

component of the Universe. Photons were abundant in the early Universe, they reach thermal

equilibrium with a bath of electrons through collisions. As can be see in table 2.2, around a

temperature of 0.25 eV, photons decoupled from the matter, and the Universe became trans-
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Figure 2.2: CMB frequency spectrum shows a behavior near to blackbody distribution.
Figure was gotten from [1].

Event redshift temp [eV] time [y]
Matter-radiation equality 3400 0.81 50000
Recombination 1300 0.30 250000
Photon decoupling 1100 0.25 380000
Last-scattering 1100 0.25 380000

Table 2.2: Main epoch in the formation of the cosmic microwave background. Values
extracted from [1].

parent. Nowadays, these photons are observed as the CMB [1].

In the CMB, photons show a stable energy spectrum, as a consequence of the thermal

equilibrium of photons, it can be described as a blackbody spectrum, with the temperature T0 =

2.7260±0.0013 K [40], the fluctuation of CMB temperature is small, ∆T/T ∼ 10−5 [39], and

contains an enormous amount of information about the composition of our Universe. Systems

in equilibrium are characterized by a time-independent distribution function: the Fermi-Dirac

distribution (for fermions) or the Bose-Einstein distribution (for bosons)

f (p.T ) =
1

e(E(p)−µ)/T ±1
, (2.29)

where p is the momentum, µ the chemical potential and T the temperature of the system. The
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+ sign is for fermions (e.g. electrons) and − sign for bosons (e.g. photons). Using the proper

units in eq.(2.29) for photons with E = hν and T = T0, it is plotted the curve in figure 2.2.

From distributions can get the number and energy density

n =
g

(2π)3

∫
d3 p f (p,T ) =

ζ (3)
π2 gT 3 , (2.30a)

ρ =
g

(2π)3

∫
d3 p f (p,T )E(p) =

π2

30
gT 4 , (2.30b)

where E =
√

m2 + p2 is the energy and g are the degrees of freedom of particle. Using the

observed temperature of the CMB, T0 ≈ 2.73, it can find the number and energy density of

relic photons today

nγ,0 = 2
ζ (3)
π2 gT 3

0 ≈ 410 photons cm−3 , (2.31a)

ργ,0 =
π2

15
gT 4

0 ≈ 4.6×10−34 gr cm−3 . (2.31b)

Where has been used for photons g = 2 [39].

2.3 Dark matter

Dark matter represents an outstanding problem in both cosmology and particle physics. From

the context of particle physics, dark matter can be made of one o several new particles, which

are expected to be electrically neutral, uncolored, weakly-interacting, and stable [43]. The

cosmological density of dark matter Ωdm,0 could be inferred from table 2.1

Ωdm,0 = Ωm,0−Ωb,0 ≈ 0.263 . (2.32)

The particles of dark matter could arise from theories Beyond the Standard Model (BSM)

of particle physics, this has implicated an enormous proliferation of dark matter candidates,

which are currently being sought in an impressive array of accelerator, direct, and indirect de-

tection experiments [44]. The most studied mechanism is thermal production, positing that

dark matter particles were in chemical and thermodynamical equilibrium with other species
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of the standard model of particles at early Universe, until the dark matter annihilation rate

dropped below the expansion rate of the Universe, this leads to the models of Weakly Inter-

acting Massive Particles (WIMPs). The other most discussed dark matter model is the based

on Supersymmetry (SUSY), among the most studied candidates are: neutralino and grav-

itino. Many alternative theories have been proposed in a phenomenological way: Kaluza-Klein

gravitons, axinos, quintessinos, Fuzzy dark matter (FDM) and other interesting superWIMPs

candidates.

According to the dispersion velocity of dark matter particles, they could be classified as

hot (HDM), warm (WDM), or cold dark matter (CDM). The CDM has successfully explained

large-scale structure formation in the early Universe as well as the abundance of galaxy clus-

ters in the standard ΛCDM model. The theory faces a number of challenges. For example,

the number of satellite galaxies around to milky way is smaller than the expected from ΛCDM

model (the missing satellite problem). It also predicts steeply cuspy density profiles, causing

a large fraction of haloes to survive as substructures inside larger haloes (the cusp-core prob-

lem) [45]. The key question is whether a better understanding of baryon physics, dark matter

physics, or both will be required to meet these challenges.

2.3.1 Missing Satellites

The observed stellar mass functions of field galaxies and satellite galaxies in the Local Group

are much flatter at low masses than predicted by simulations of dark matter halos mass func-

tions in ΛCDM: dn/dM⋆ ∝ Mαg
⋆ with αg ⋍ −1.5 (vs. α ⋍ −1.9 for dark matter) [46]. The

problem is more significant for galactic satellites (see the image in figure 2.3.1), where the

observations around the Milky Way are much fewer (50 satellite galaxies approximate) than

predicted by N body simulations (O(103) satellites galaxies).

2.3.2 The cusp-core problem

The ΛCDM simulations that include only dark matter predict that dark matter halos are fitted

using the Navarro-Frenk-White (NFW) profile for the contribution of the dark matter halo, but



2.4 Inflation scenario 27

Figure 2.3: The left image shows a N-body simulation with ΛCDM dark matter distribution,
within a sphere of radius 250 kpc around the center of Milky Way. The right image shows
the current census of Milky Way satellite galaxies (50 satellite galaxies approximate). The
galactic disk is represented by the circle inside (15 kpc) and the circle outside has a radius
of 250 kpc (with O(103) satellites galaxies). Images were taken from [46].

in the observations, it has been seen that profiles rise steeply at small radii ρ(r) ∝ r−γ , with

γ ⋍ 0.8− 1.4 over the radii of interest for small galaxies [46]. This is in contrast to many

low-mass dark matter dominated galaxies with well-measured rotation curves, which prefer

fits with a constant density core (γ ≈ 0−0.5). In figure 2.3.2, is shown as a dashed line for the

typical circular velocity curve predicted for a NFW ΛCDM dark matter halo with Vmax ≈ 40

km s−1 compared to the observed rotation curves for two galaxies with the same asymptotic

velocity. The observed rotation curves rise much more slowly than the ΛCDM expectation,

reflecting core densities that are lower and more core-like than the fiducial prediction.

In recent years, two main ways have been proposed for solving the missing satellite and

cusp-core problems. First, the solution through baryon physics. Second, the number of satellite

galaxies is suppressed due to the kinematic properties of the dark matter particles [45]. In this

thesis, we take the second way by constraining the properties of dark matter particles that

influence just the structure formation.

2.4 Inflation scenario

The previous section mentioned that FRW cosmology describes a homogeneous and isotropic

Universe, but it was not explained why it is that way. One solution to this problem is to
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Figure 2.4: The dashed line shows the predict of the dark matter halos profile with NFW
for a typical rotation curve Vmax ≈ 40 km s−1 galaxy in ΛCDM. This rotation curve rises
quickly, reflecting a central density profile that rises as a cusp with ρ ∝ 1/r. The data points
in this figure show the rotation curves of two example galaxies of the size from the LITTLE
THINGS survey. Image taken of [46].

assume an early period of accelerated expansion, this period is known as cosmological inflation

[47; 48; 49], and refers to the early epoch of exponential expansion of the Universe that sets

up the initial conditions of the Hot Big Bang. The inflationary paradigm is well motivated

because it provides a solution to some of the problems of the standard cosmological model,

such as the horizon and flatness problems (see [50; 51; 52; 53] for some reviews).

2.4.1 Horizon problem

The horizon problem is linked to the grade isotropy in the CMB: how to explain that regions

in the CMB sky have the same temperature, whereas their angular separation is too large to

correspond to causally connected patches at the time of the last scattering?, at the beginning

of the Universe, we have a singularity at the time ti ≡ 0 (ai ≡ 0), and the greatest comoving

distance from which an observer at time t will be able to receive signals traveling at the speed
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of light is called the comoving horizon or the particle horizon

dh(η) = η−ηi =
∫ t

ti

dt
a(t)

=
∫ lna

lnai

(aH)−1d lna . (2.33)

We have seen in the previous section that the early Universe is dominated by radiation. We can

write aT = constant, and in a comoving coordinate system, any physical distance grows like

d(t) =
T (t0)
T (t)

d(t0) . (2.34)

Using T0 ≈ 2.7 K ≈ 2.3×10−13 GeV , the radius of the spherical volume in principle observ-

able today by an observer at the center of the sphere, is dH0(t0) ≈ 1026 m. At the time of the

last scattering tLSS, the radius of the observable Universe is

dH0(tLSS)≈ 7×1022 m .

The maximal distance between of two causally connected points would roughly be

dHLSS(tLSS)≈ 2×1021 m .

At last scattering, our observable Universe would therefore have been constituted of about 105

causally disconnected regions. But CMB photons emerging from these regions are observed to

have all the same temperature, to a 10−5 accuracy. At the Planck time, the number of causally

disconnected patches would have been much larger, about 1089 [54]. As illustration of this

problem, we can think in an observer in O at time t0 (see figure 2.4), η(t0) is the comoving

radius of the sphere centered in O separating particles causally connected (region of A′ and B′)

to the observer of particles causally disconnected (region of A and B).
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Figure 2.5: Illustration of the horizon problem in standard cosmology. All events that we
currently observe are on our past light cone. The CMB is observed from the hypersurface
t = t0. The AB’ region at last scattering is isothermal in the CMB sky, although it appears
to be constituted of causally disconnected patches. Image taken of [54].

2.4.2 Flatness problem

The time-dependent critical density of the Universe could be defined as ρcrit = 3m2
plH

2/8π. From

eq.(2.20) we can write the time-dependent curvature parameter

Ωk(a) =
ρk

ρcrit
=

ρcrit−ρ

ρcrit
=

(a0H0)
2

(aH)2 Ωk,0 , (2.35)

the CMB provides an upper bound on the size of the curvature parameter today, |Ωk,0|< 0.005,

and the comoving Hubble radius (aH)−1 is growing during the radiation era, but we expect

that |Ωk,0|was smaller in the past than today. For example, roughly at radiation-matter equality

we have

|Ωk(teq)|≲ 3×10−6 ,

and at the Planck time,

|Ωk(tpl)|≲ 10−60 .

Well, if the Universe is not strictly flat, the ΛCDM model does not explain why the spatial

curvature is so small [54].
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2.4.3 The physics of inflation

The basic condition under such the horizon and flatness problems are solved is an early epoch

of accelerated expansion of the Universe. The main feature of inflation is that all physical

quantities slowly vary, despite space expanding rapidly [1]. We can see this with a rewrite the

change of the time to the comoving Hubble radius as

d
dt
(aH)−1 =− ȧH +aḢ

(aH)2 =−1
a
(1+ ε) , (2.36)

we define ε as the Hubble slow-roll parameter

ε ≡− Ḣ
H2 =−d lnH

dN
, (2.37)

and the amount of expansion during inflation is quantified with the parameter number of e-

folds N, defined as

N ≡ ln
[

a
ai

]
. (2.38)

Where ai is the scale factor at the start of inflation. Eq.(2.37) shows that a shrinking of Hubble

parameter, ∂t(aH)−1 < 0, is associated with ε < 1. It is expected that inflation during a suffi-

ciently time (between 40 and 60 e-folds), which requires that ε remains small for a sufficiently

large number of Hubbles times, this condition is quantified with the second Hubble slow-roll

parameter [1]

κ ≡ d lnε

dN
=

ε̇

Hε
. (2.39)

The fractional change of ε for the condition |κ|< 1 per e-fold is small.

2.4.4 Inflation as scalar field dynamics

The inflationary epoch is a phase of quasi-exponential accelerated expansion of the Universe,

this kind of expansion can be obtained if during inflation, is assumed that the Universe is filled

with a scalar field φ , called inflaton. Considering a minimally coupled scalar field φ with a
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Lagrangian density [55]

L=−1
2

gµν
∂µφ∂νφ −V (φ) , (2.40)

where V (φ) is the potential energy density associated to the field. The action of a homogeneous

scalar field φ ≡ φ(t) in an expanding FRW spacetime is

S =
∫

d4x
√
−g L=

∫
d4x
√
−g

[
−1

2
gµν

∂µφ∂νφ +V (φ)

]
, (2.41)

where g ≡ det gµν is the determinant of the FLRW metric determinant. In the equation of

motion of the scalar field, we perform the variation of the action under the variation of the

inverse metric gµν → gµν +δgµν and the field variation φ → φ +δφ

δS =−1
2

∫
d4x
√
−g

[
∂µφ∂νφ −gµν

(
1
2

gαβ
∂αφ∂β φ +V (φ)

)]
δgµν , (2.42)

where has been used δ
√
−g =−1

2
√
−g(gµνδgµν). The principle of least action δS = 0 leads

to the Klein-Gordon equation

1√
−g

∂µ

(√
−ggµν

∂νφ
)
=

∂V
∂φ

, (2.43)

that can be written in a simple way

φ̈ +3Hφ̇ =−∂V
∂φ

. (2.44)

Where the factor 3Hφ̇ is the Hubble friction that plays a crucial role in the inflationary dy-

namics. With the assumption that φ is spatially homogeneous, T µν takes the form of a perfect

fluid, and the energy density and pressure are given by

ρ =
φ̇ 2

2
+V (φ) , (2.45a)

P =
φ̇ 2

2
−V (φ) . (2.45b)
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The dynamics during inflation are then determined from eq.(2.44) and the FRW equations

eq.(2.15) by

H2 =
8π

3m2
pl

[
φ̇ 2

2
+V (φ)

]
, (2.46a)

φ̈ +3Hφ̇ =−dV
dφ

. (2.46b)

Where mpl is the 4-th dimensional Planck mass (it is relates with the reduce Planck mass as in

appendix ).

2.4.5 Slow-roll approximation

The eqs.(2.46) are coupled, and we can combine them into an expression for quantified the

evolution of the Hubble parameter in function to field

Ḣ =−4πφ̇ 2

m2
pl

. (2.47)

Dividing the first equation in eq.(2.46) with eq.(2.47) is found the parameter ε in function to

the field

ε =
Ḣ
H2 =

3φ̇ 2

2
φ̇ 2

2 +V (φ)
. (2.48)

The condition of inflation is satisfied if ε ≪ 1, which occurs if the kinetic contribution φ̇ 2/2

makes a small contribution to the total energy density, this is called the slow-roll inflation [54].

In the same way it is useful to define the dimensionless acceleration per Hubble time

δ ≡− φ̈

Hφ̇
. (2.49)

As long as δ is small, the inflation kinetic energy stays subdominant and the inflationary

expansion continues. The second slow-roll parameter defined κ , in function to field is obtained

by

κ = 2(ε−δ ) . (2.50)
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The condition ε≪ 1 implies φ̇ 2≪V , which leads to the following simplification of the Fried-

mann equation

H2 ≈ 8πV
3mpl

. (2.51)

Eq.(2.51) implies, that in the slow-roll approximation, the Hubble expansion rate is determined

fully by the potential and field, therefore we can rewrite the parameter ε in function of potential

and field through eq.(2.47) and eq.(2.51)

ε ≈
m2

pl

16π

[
1
V

dV
dφ

]2

. (2.52)

To evaluate parameter δ defined in eq.(2.49), in the slow-roll approximation

δ + ε =− φ̈

Hφ̇
− Ḣ

H2 ≈
m2

pl

8π

1
V

d2V
dφ 2 . (2.53)

A convenient way to re-defined the two potential slow-roll parameter from eq.(2.52) and

eq.(2.53) is

εV =
m2

pl

16π

[
1
V

dV
dφ

]2

, (2.54a)

ηV =
m2

pl

8π

1
V

d2V
dφ 2 . (2.54b)

The number of e-folds realized from an initial field value can be determined analytically by

[54]

dφ

dN
=

m2
pl

8π

[
1
V

dV
dφ

]
, (2.55a)

Ntot =

√
4π

mpl

∫
φ0

φend

dφ√
εV

. (2.55b)

Where φ0 and φend are the field values at the boundaries of the interval where is valid εV < 1.
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2.4.6 Initial conditions

In this section we will suppose a spatially varying fluctuation on inflation. The coupling to

the metric will lead to mixing between the inflation fluctuations δφ and the metric fluctuations

δgµν . The line element defined in eq.(2.1), for the scalar fluctuations takes the form

ds2 = a2(η)
[
−(1+2A)dη

2 +2∂iBdxidη +δi jdxidx j] . (2.56)

Where the metric fluctuations A and B are related to the inflation fluctuations δφ through the

Einstein equations. Varying of the action defined in eq.(2.41) with φ(x, t) = φ(t)+ δφ(x, t)

and
√
−g = a4(1+A), we get the motion equation [1]

δφ
′′+2Hδφ

′−∇
2
δφ = (A′+∇

2B)φ ′−2a2V,φ A−a2V,φφ δφ , (2.57)

where H = aH, φ ′ = dφ/dx, φ ′′ = d2φ/d2x, V,φ ≡ dV/dφ and V,φφ ≡ d2V/dφ 2. The Einstein equa-

tions can be use to eliminate the metric perturbations A and B in eq.(2.57)

A = ε
H

φ
′ δφ , (2.58a)

∇
2B =−ε

H

φ
′ (δφ

′+(δ − ε)Hδφ) , (2.58b)

where the slow-roll parameter defined in eq.(2.54) are written in term of φ as ε → ε(φ) and

δ → δ (φ). The eq.(2.57) can be rewritten in a simpler form

δφ
′′+2Hδφ

′−∇
2
δφ =

[
(3+2ε−δ )(ε−δ )− δ ′

H

]
H2

δφ . (2.59)

The eq.(2.59) can be written in a compact shape if we define f ≡ aδφ , then we get the so-called

Mukhanov-Sasaki equation [1; 54]

f ′′+
(

k2− z′′

z

)
f = 0 . (2.60)

Where z≡ aφ
′
/H = a

√
2ε Mpl.
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2.4.7 Power spectrum of primordial curvature perturba-

tions

We saw in the previous section, that the primordial fluctuations are quantified through the field

f (η ,x) in eq.(2.60). These primordial fluctuation can be defined as quantum fluctuation with

the respective operator f̂ (η ,x). In the vacuum state we have

〈
| f̂ |
〉
= 0 , (2.61a)〈

| f̂ |2
〉
=
∫ d3k

(2π)3 | fk(η)|2 . (2.61b)

Where fk(η) is the Fourier mode function and depend only on the magnitude of the comoving

Fourier wavenumber k. The variance of the quantum fluctuations is determined by the power

spectrum [1]

PR(k)≡
k3

2π2 | fk(η)|2 . (2.62)

The parameter PR(k) in eq.(2.62), is so-called as the primordial curvature perturbations, and

is the bridge between inflation and the late Universe. The observed scalar power spectrum of

the CMB is in general, described by the power law of the momentum k [56]

PR(k) =As

(
k
k⋆

)ns−1+ 1
2 αs(k) ln(k/k⋆)

. (2.63)

Where the amplitude As and the spectral index or tilt ns are observable parameters, k⋆ is the

pivot scale of the experiment, and the tilt running αs is a function that depends on the infla-

tionary model. One of the goals of current precision cosmology is to measure these quan-

tities by, e.g., observing the polarization of the CMB [57; 58; 59]. The ever-tighter con-

straints [40; 60; 61; 62; 63; 64; 65] on these observables and the ratio r of the tensor and scalar

amplitudes (associated with the gravitational wave background [66; 67; 68]) offer an opportu-

nity to discriminate among the various existing inflationary models (see e.g. [69] for a large
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classification). The scalar spectral index is defined as

ns−1≡ d lnPR(k)
d lnk

, (2.64)

using k = aH in eq.(2.64), and using the slow-roll parameters evaluated in the pivot scale k⋆

ns = 1−2ε⋆−κ⋆ . (2.65)

The power spectrum amplitude is defined as [40]

As =
V

24π2εV

∣∣∣∣
φ=φ⋆

. (2.66)

which for the best Planck fit’s value is ln(1010As) = 3.0448 and ns = 0.9649±0.0042 [70].



Chapter 3

Thermalization and Spectral distortions

In the early Universe, photons and baryons are tightly coupled, behaving as a single viscous

fluid close to thermal equilibrium due to Compton scattering (CS), Bremsstrahlung (BR), and

double Compton scattering (DC), processes that isotropize the photon-baryon fluid. However,

early energy injection into the photon-baryon fluid can disrupt thermal equilibrium, causing

the CMB to experience small departures from the blackbody distribution. These deviations

are known as spectral distortions and are sensitive to any energy injected into the CMB at

different epochs. The CMB SD complements the anisotropy CMB observations and provide a

new benchmark to test standard and non-standard cosmological scenarios.

3.1 The Boltzmann equation

The Boltzmann equation gives us information for the rate of change in time of a given particle

through its distribution function f
d f
dt

=C[ f ] . (3.1)

The right-hand side in eq.(3.1) contains all possible collision terms; in the absence of col-

lisions, we have d f/dt = 0 [39]. Suppose that the distribution function depends on time t,

position x, and the moment p. Here x and p are the 4-position and 4-momentum for photons,
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respectively, we can write the left-hand side of eq.(3.1) as

d f
dt

=
∂ f
∂xµ

dxµ

dt
+

∂ f
∂ pµ

d pµ

dt
, (3.2)

taking account the direction vector, p̂i = p̂i, which by definition satisfies δi j p̂i p̂ j = 1, we can

write eq.(3.2) as
d f
dt

=
∂ f
∂ t

+
∂ f
∂xi .

dxi

dt
+

∂ f
∂ p

d p
dt

+
∂ f
∂ p̂i .

d p̂i

dt
. (3.3)

If we considered the photons in the perturbed FRW Universe, with Φ and Ψ as the perturbation

in the metric and the spatial curvature respectively, we have [39]

dxi

dt
=

p̂i

a
(1+Φ−Ψ) , (3.4a)

1
p

d p
dt

=−H− ∂Φ

∂ t
− p̂i

a
∂Ψ

∂xi . (3.4b)

Introducing eqs.(3.4) in eq.(3.2), and collecting terms we can rewritten eq.(3.2)

d f
dt

=
∂ f
∂ t

+
p̂i

a
∂ f
∂xi − p

∂ f
∂ p

[
H +

∂Φ

∂ t
+

p̂i

a
∂Ψ

∂xi

]
. (3.5)

The right-hand side of eq.(3.1) is more difficult to describe because it depends on all species

and the respective interaction between them. For example, if we consider CS, the scattering

process of interest is

e−(q)+ γ(p)←→ e−(q′)+ γ(p′) , (3.6)

the collision coefficient will be described as the sum over all momentum (q,q′,p′) which affect

the photon distribution f (p)

C| f (p)|= ∑
q,q′,p′

|Amplitude|2
{

fe(q′) f (p′)− fe(q) f (p)
}
. (3.7)

Where the parameter |Amplitude|2 is the Lorentz invariant matrix element, f is the photon

distribution and fe is the electron distribution function [71]. In the next section, we will write

the Boltzmann equation eq.(3.1) for photons with the explicit collision coefficient for CS, BR
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and DC.

3.2 Thermalization of CMB spectral distortions

The CMB exhibits a perfect blackbody frequency spectrum, given by the precision of the mea-

surements. At high redshifts z ≳ 108−109, the thermalization of CMB spectral distortions is

extremely efficient. Therefore, the study of CMB SD is restricted at redshift below z ≲ 108.

During the subsequent evolution of the Universe, the main interactions between the photons

and matter are governed by CS, DC scattering, and BR as we mentioned in the previous sec-

tion, these interactions became inefficient below z ≲ 107 [16; 72; 73]. The thermalization

problem can be formulated by solving the Boltzmann equation in the expanding Universe and

the interaction evolution with free electrons (and baryons) [71].

3.2.1 Evolution of the photons in the Universe

We wrote the Boltzmann equation for photons in the previous section, here we will write the

evolution of the photon phase space distribution more simply as f = nγ(xµ , pµ). In this section,

we consider the Boltzmann equation in an isotropic and homogeneous FRW Universe, which

implies ∂Φ/∂ t = 0, ∂Ψ/∂ t = 0, and ∂nγ/∂xi = 0. From eq.(3.5) we have

∂nγ

∂ t
−H p

∂nγ

∂ p
=C[nγ ] . (3.8)

Where nγ(xµ , pµ)→ nγ(t, p). The collision term in the Boltzmann equation have several im-

portant effects. Most importantly, CS couples photons and electrons, keeping the two in close

thermal contact until low redshifts z≃ 100−200. BR and DC allow adjusting the photon num-

ber and are especially fast at low frequencies [74]. The descriptions of collision terms for CS,

DC, and BR determine the extent to which the CMB can be thermalized. The right-hand side

of eq.(3.8) can be written as a sum of terms describing the different interactions of the particles

C[nγ ] =
dnγ

dτ

∣∣∣∣
CS

+
dnγ

dτ

∣∣∣∣
DC+BR

. (3.9)
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In eq.(3.9) has been introduced the optical depth dτ = NeσT dt with Ne the electron numerical

density and σT the Thomson cross-section.

Collision term for Compton scattering

The dominant interaction that thermally couples photons and electrons before recombination

is the CS, this interaction is responsible for redistributing photons in energy. The CS term in

eq.(3.9) accounts for the comptonization of photons by free thermal electrons, we can use the

so-call Kompaneets equation [74]

dnγ

dτ

∣∣∣∣
CS
≈ θe

x2
∂

∂x
x4
[

∂nγ

∂x
+

Tγ

Te
nγ(nγ +1)

]
. (3.10)

Where Tγ = T0(1+ z) is the photon temperature, θe = kBTe/me is the dimensionless electron

temperature with me as the electron mass, Te is the electron temperature, x = hν/kBTγ is the

photon frequency dimensionless, and kB is the Boltzmann constant. The eq.(3.10) is obtained

by computing the Compton collision term in eq.(3.7), at the limit of hν ≪ kTe and hTe≪ me.

The first term into the brackets is associated to small shift in the observed frequency induced by

electrons with relativistic velocities, this known as Doppler broadening and Doppler boosting,

and the second term accounts for the recoil effect and stimulated recoil [75]. These latter terms

are especially important for reaching full equilibrium in the limit of many scatterings [74].

Collision term for Double Compton scattering and Bremsstrahlung

In the early Universe the responsible of photon production and absorption are BR

e−+X←→ e−+X+ γ , (3.11)

where X is an ion, and the DC scattering

e−+ γ ←→ e−+ γ + γ . (3.12)
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The term associated with the contribution of double Compton scattering and Bremsstrahlung

in eq.(3.9) can be written as [76]

dnγ

dτ

∣∣∣∣
DC+BR

=
KBR e−xe +KDC e−2x

x3

[
1−nγ(exe−1)

]
. (3.13)

Where xe = hν/kBTe is the electron dimensionless frequency, KBR and KDC are the emission

coefficient contribution from Bremsstrahlung and double Compton scattering, respectively. In

the thermally coupled photons with electrons we can approximate Te ≈ Tγ at z ≳ 103, we have

KBR ≃ 1.4×10−6
[

gff
3.0

][
Ωbh2

0.022

]
(1+ z)−1/2 , (3.14a)

KDC ≃ 1.7×10−20(1+ z)2 . (3.14b)

Where gff is the BR gaunt factor. Coefficient in eqs.(3.14) implies that zdc,br ≃ 3.7×

105
([

gff
3.0

][
Ωbh2

0.022

])2/5
BR and DC emissions are similarly important. At z > zdc,br, DC emis-

sion is more crucial, while at lower redshifts BR dominates [71; 76].

Electron-temperature term

The right term in the left-hand side in eq.(3.1) arises because the electron and photon evolve

with time [77]

H p
∂nγ

∂ p
= x

∂nγ

∂x
∂

∂ t

[
ln
(

Te

T0(1+ z)

)]
, (3.15)

the electron temperature is given by

dTe

dt
=−2HTe−

4σT ργ

3me f⋆

(
Te−

1
ργπ2

∫
∞

0
p4nγ(1+nγ) d p

)
. (3.16)

Where f⋆ includes the correction due to baryons f⋆ = [(1+Xe)/2− (3+2Xe)Yp/8] (1−

Yp/2)−1xe with the ionization fraction of electrons Xe and the primordial helium mass frac-

tion Yp = 0.25. In the right-hand side of eq.(3.16) the first term is associated to Compton

cooling, and the second term dominates in the high tightly coupled between photon-electrons,

in this case is obtained Te(z)≃ T0(1+ z) [77].
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3.3 Analytic descriptions for µ and y distortion

In the previous section, we have given a formulation of the thermalization problem, including

all the relevant collision therms in eq.(3.1). In this section, we want to present an analytic

approximation for CMB µ and y-SD. As it has been said before, CMB SD depends on the

energy injection time, at very early times (z ≲ 108), no spectral distortion could be created,

since it would simply result in a shift of the blackbody temperature ∆T . Below to z∼ 2×106

the CMB spectrum is sensitive to an effective chemical potential µ since processes as double

Compton scattering become inefficient (3× 105 ≲ z ≲ 2× 106). At a later time, the CMB is

mostly sensitive to the y-distortion (z ≲ 104), which quantifies the amount of energy transfer

via Compton scattering, which becomes less efficient [16; 25]. These arguments have been

used for formulating an analytic theory for µ and y-SD.

For small spectral distortions (µ , y≪ 1) can be written an analytical set of equations for

the description of µ and y-distortion. Some considerations are made in eq.(3.1): it is assumed

that photons and electrons are in thermal equilibrium, therefore, their temperature is the same

Tγ = Te and is used Tγ = Tz = T0(1+ z) for high redshift. It is assumed that when radiation

dominates the evolution of the Universe, the CS is extremely efficient, and photons evolve

along a sequence of equilibrium spectra [71; 76]. Therefore, is assumed that one or more of the

three processes are effective enough to establish quasi-static conditions. The last assumption

allows us writes the solution of the photon distribution nγ as

nγ ≃ npl +∆nγ ≈ npl +∆nµ

γ +∆ny
γ , (3.17)

where the full SD CMB is given by ∆nγ ≡ ∆nµ

γ +∆ny
γ , this can be written in the intensity units

as

∆I = 2hν
3
∆nγ . (3.18)

Where npl is the Planck distribution function associated with the perfect blackbody, produced

in the thermalization process of photon and ∆nγ corresponds just to a departure of the black-

body shape and is associated with all photon interaction [74].
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3.3.1 The µ-spectral distortion

In the early Universe, many scatterings are taking place and the redistribution of photons in

frequency is very efficient, this regimen is found at 3×105 ≲ z ≲ 2×106 and the distortion

is given by a chemical potential µ-distortion. As we mentioned before, we assume that Boltz-

mann equation defined in eq.(3.1), can be approximated by neglecting emission and absorption

processes, and eq.(3.9) becomes quasi-stationary [71; 74]

0≈
dnγ

dτ

∣∣∣∣
CS

, (3.19)

where the right-hand side is the term described with eq.(3.10). The solution of eq.(3.19) is

given by

∆nµ

γ ≡
δnγ

nγ

∣∣∣∣
µ

= µ

[
xex

ex−1

(
0.4561− 1

x

)]
. (3.20)

Where µ is the chemical potential in the Bose-Einstein function distribution, and is obtained

with the statistical relations defined in eqs.(2.30) and supposing a full energy injection µ =∫
Q̇dt

µ ≃ 1.4
∫

∞

0
dz

d
(
Q/ργ

)
dz

Jµ(z) . (3.21)

Where Jµ(z) defines the spectral µ-distortion visibility function and parametrizes the thermal-

ization efficiency for µ-distortion, the shape of this function is shown in the appendix A.1.

The factor d(Q/ργ)/dz quantifies the energy release caused by some external physical process

at redshifts range 3×105 ≲ z ≲ 2×106.

3.3.2 The y-spectral distortion

At redshifts z ≲ 5× 104 the redistribution of photons in frequency becomes inefficient, and

the distortion is given by the y-distortion. If the electrons are strongly heated, Te/me≫ p/me,

we can assume that in the Boltzmann equation eq.(3.1), can be neglected the photon emission

[71], and we can write
dnγ

dτ
≈

dnγ

dτ

∣∣∣∣
CS

, (3.22)
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once again, the right-hand side is the term described in eq.(3.10). The solution of eq.(3.22) is

given by

∆ny
γ ≡

δnγ

nγ

∣∣∣∣
y
= y
[

xex

ex−1

[
x
(

ex +1
ex−1

)
−4
]]

. (3.23)

Where y is the so-called Compton-y distortion, this was first studied for the hot electrons re-

siding inside in the potential wells of clusters of galaxies, giving rise to the thermal Sunyaev-

Zeldovich (SZ) effect [74]. The y-distortion can be obtained with the statistical relations de-

fined in eqs.(2.30) and supposing a full energy injection y =
∫

Q̇dt

y ≃ 1
4

∫
∞

0
dz

d
(
Q/ργ

)
dz

Jy(z) . (3.24)

Where Jy(z), similar as in the previous section, defines the spectral y-distortion visibility func-

tion and parametrizes the thermalization efficiency for y-distortion, the shape of these function

is showed in the appendix A.1. The factor d(Q/ργ)/dz quantifies the energy release caused by

some external physical process at redshifts z ≲ 104.

In the next chapters, we describe in details the term d(Q/ργ)/dz for two different cases, and

show the main results of this thesis for decaying dark particles and damping of primordial

small-scale perturbations. The amplitudes of the SD (eq.(3.21) and eq.(3.24)) are directly

linked to the total energy that was released over the cosmic history.
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Spectral distortions from dark sector

4.1 QCD dark matter scenario

The dark-sector hadronization may have a collection of dark bound states that, depending on

the complexity of the undergoing model, is likely to have dark particles with different mass,

lifetime, charge, etc. For instance, at the QCD confinement scale, ΛQCD, gauge invariant states

are created forming color-neutral particles, mesons (e.g. pions π), and baryons (e.g. protons

and neutrons), with non-perturbative masses generated and being proportional to ΛQCD (e.g.

mπ ≃ 140 MeV, mn ≃ 940 MeV) much larger than the quark masses (mu ≃ 2.3 MeV, md ≃ 4.8

MeV). From a dimensional analysis of spontaneous symmetry breaking theories, the mass of

the dark bound states is due to the underlying gauge force and proportional to the confinement

energy scale, i.e. mχ ∝ Λc. Examples of this, beyond QCD, are the gauge-mediated SUSY

breaking model [78]. With no constraints on the dark sector theory, masses of the bound states

can also be much larger than the energy transition, mχ ≪ Λc.

In QCD, mesons are particles that have a short life span compared to baryons: e.g., the

proton has a long lifetime, since no decay has been detected its lifetime is O(1032) yr, neutron

decays into protons with a lifetime of O(103) s, and charged pions have a lifetime of O(10−9)

s. Some dark particles may be electrical neutral and stable particles (i.e. dark baryons) that

could be good candidates for CDM or WDM, depending on the velocity dispersion vc at the

confinement epoch it could describe one candidate or another. On the other hand, unstable
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(short-lived) dark particles can also be expected, i.e. dark mesons, that decay after the confine-

ment scale and deposit a fraction of their energy, into the SM photons through a coupling of the

SM and the dark sector. The energy deposed to the photons could produce SD, we aim to com-

pute the relation between the confinement phenomenological parameters and the magnitude of

the SD.

We assume a model whose dynamics give rise to a phase transition at an energy scale

Λc based on gauge theory and has a structure similar to the standard QCD model. In this

gauge dark group that is by hypothesis not contained in the standard model of particles, its

dynamic at energies larger than Λc(ac) the dark elementary fields are nearly massless and

are relativistic, they behave as radiation. Below the cosmological scale ac a phase transition

takes place due to a strong gauge coupling constant, and dark elementary fields bind together

producing bound states, that is, particles acquire a non-perturbative mass. Since the bound

states are more massive than the elementary particles, the resulting velocity dispersion of the

i-particle after the transition, vc,i is significantly reduced compared to the elementary fields.

The particles are relativistic and with a very small mass before the transition, a < ac, they

behave as relativistic particles. In contrast, after the transition, a > ac, the particles acquired a

non-perturbative mass with an initial velocity dispersion vc, depending on the value of vc, the

particle may still be in a relativistic regime, which is an interesting case but hard to distinguish

from thermal WDM particle, the velocity vc ≤ 1/
√

2, define the non-relativistic regime which

is when the momentum of the particle equals its inertial mass. Therefore, the equation of state

that describes this behavior is given by [45]

ωdm =


1
3 for a < ac

1
3v2 for a > ac

, (4.1)

where the velocity of particles is given by

v(a) =
γcvc(ac/a)√

1+ γ2
c v2

c(ac/a)2
, (4.2)

where we have used γc ≡ (1−v2
c)
−1/2. The pressure is given by the equation of state P = ωρ .
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Figure 4.1: Likelihoods for parameters on the BDM model, ac and vc, from MonteCarlo
simulations using MontePython with Plank 2018, type Ia SN, and BAO data. Light blue
region represent 2σ likelihood, where largest values of ac are still valid. Purple region is
the 2σ likelihood. Figure taken from [45].

Therefore, the dark matter energy density in the QCD dark matter scenario is

ρdm(a) = ρdm0

(
a
a0

)−4( v0

v(a)

)
, (4.3)

where v0 is obtained with eq.(4.2) evaluated today, v(a0) = v0. When ac≪ a0 and a0≪ a we

have

v0

v(a)
∼ a

a0
, (4.4)

since the last quantity is a constant, the fluid behaves as matter.

In the work [45] are presented constraints for the Bound Dark Matter (BDM) model, with

CMB Planck, supernova SNIa, and baryon acoustics oscillation data were used to established

a valid region at 1σ and 2σ in the parameter space ac− vc (see figure 4.1). In an extreme

case, the upper bound was put at ac < 2.66×10−6 for vc = 0 at 1σ (for CDM particles). Also

was evaluated the case of ac = 3.18×10−8 for vc = 1/
√

2, (for WDM articles). In this sense,
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we are interested in a set of ac− vc parameters constraints at 1σ and 2σ for simulations that

will be presented in the next section of our framework. We assume that at least one kind of

long-life and short-life particles are created, and that the minimum number of particles that the

short-life particles could decay into is two.

On the one hand, we have particles with a long life-time, neutral dark-flavor, non-

perturbative mass, and an initial velocity dispersion vc after the transition. Depending on the

value of vc this particle may describe the features of CDM, i.e. vc ∼ 0, or it could also describe

WDM if it has a non-negligible velocity vc that contributing to the free-streaming even after

the transition. The minimum number of fundamental dark fields needed to form a bound state

is two, with the opposite dark-flavor sign, χq and χq. The constituent dark model would give

us the dynamics of the bound χqχq states grouped into SU(N) dark-flavor multiplets. Multi-χq

singlet states may also exist, but the larger number of χq particles implied a lower probability

of being created, then it is assumed that a partial amount of the energy of this short-life bound

state of the dark group, is deposited into photons of the standard model

χqχq→ χshort−life→ γ . (4.5)

To compute the mass of the constituted particle, we would need to make the calculations using

relativistic quantum field theory, where bound states are identified by the occurrence of poles

of corresponding amplitudes or Green functions with appropriate quantum numbers. These

poles have a nonperturbative character, whose properties depend on the integral equations

among amplitudes and Green functions, using the specific structure of a Lagrangian for the

dark particles, which is out of the scope of this work. However, for a first-order correction, the

computation for the mass of the bound state is given by

mχ ≃ 2mq +Λc . (4.6)

The last expression is obtained assuming that the coupling constant is weak, but from di-

mensional analysis, this is still valid for a strong coupling constant. For instance, in QCD

the mass of the bound state is dominated by the binding energy, like the pion whose mass is
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mπ ≃ 140MeV, or the neutron mass mn ≃ 940MeV, in both cases, the mass is much larger the

quark masses (mu ≃ 2.3MeV, md ≃ 4.8MeV). If mq is small compared to Λc, the eq.(4.6) can

be approximated as mχ ≃ Λc
(
1+2mq/Λc

)
≡ αΛc(ac). From energy and momentum conser-

vation equations for the decay process, the equation of the energy of photons produced is

Eγ = Σχ

αΛc

2
. (4.7)

Where Σχ is the fraction of the bound states of the dark group transferring any energy to the

CMB photons, and the factor 1/2 is for the case of two photons as the most probable interaction.

4.2 Decaying dark particle scenario

The key feature in the model worked here is an abrupt transition of the dark matter equation of

state, as we mentioned in the previous section. This is a consequence of the phase transition at

energy scale Λc at scale factor ac. We assume that two kinds of dark particles are formed after

ac, a long-life stable, and a short-life unstable particle. Therefore, we need to define the net

volumetric rate of heat injection d(Q/ργ)/dz in the process for decaying particles in a time τχ .

For a< ac there is no energy transfer to photons, this means d(Q/ργ)/dz = 0. In a comovil frame,

the number of particles N obeys the exponential decay, for the unstable particle before phase

transition in an expansion Universe Nχ(z) = Ndm(z)e−Γχ (t(z)−tc), where tc is the time when the

unstable particle is created, we can write the energy density as ρχ(z) = Σχρdm(z)e−Γχ (t−tc),

where ρχ(z) is the energy density evolution of the decaying particle and ρdm is the energy

density of the dark matter defined in eq.(4.3). The rate of transfer energy, Q̇ is given by

Q̇ = dρ/dt, is usually assumed in this scenario to have a short lifetime [34]. However, there are

no constraints on the lifetime of particles in the dark sector, and we certainly do not make any

assumptions about the lifetime and the energy injection rate will depend on the time evolution

of the individual particle energy E and the number density, N as this last parameter carries the

decay behavior. We can write the energy rate as,

Q̇ = ρ̇χ(z)e−Γχ (t−tc)−ρχ(z)Γχe−Γχ (t−tc) , (4.8)



52 Spectral distortions from dark sector

10 6 10 5

a

1

2

3

4

5

6
(1

+
z)

d dz
 (Q

/
) [

×1
0

2 ]

= 0.01 crit

= 0.1 crit

= crit

= 10 crit

= 50 crit

a = 5 × 10 7

ay = 3.3 × 10 6

10 6

a

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(1
+

z)
d dz

 (Q
/

) [
×1

0
2 ]

= 0.01 crit

= 0.1 crit

= crit

= 10 crit

= 50 crit

a = 5 × 10 7

ay = 3.3 × 10 6

Figure 4.2: Function dQ/dz calculated for vc = 0.01 in ac = 5×10−7 (left) and ac = 1.99×
10−7 (right), with Γcrit = 5.90 yr−1 and Γcrit = 36.82 yr−1 respectively. Vertical dotted lines
are related with µ scale factor region.

then, we use the continuity equation, ρ̇χ +3H(ρχ(z)+P) = 0, to simplify the last expression

and change the time derivative to redshift derivatives and, written in a dimensionless shape,

we arrive at the expression

d
(
Q/ργ

)
dz

=
ΓχΣχρdme−Γχ (t−tc)

ργH(1+ z)

[
1+

Γcrit

Γχ

]
. (4.9)

Where Γcrit ≡ 3H(1+ωχ) is a time-dependent parameter proportional to the rate of expansion

of the Universe. The eq.(4.9) gives naturally two regimes, the first Γχ ≫ Γcrit when the rate of

decay of the particle is greater than the expansion of the Universe, this describes well a short

lifetime particles and is reduced to previous results. The second one, when Γχ ≪ Γcrit, we

have long lifetime particle after the production of the decaying particles, a term that cannot

be ignored and introduces a rich of new possible scenarios. Now considering the last term on

eq.(4.9) could lead to an underestimation of the energy rate, as can be seen in figure 4.2.

In eq.(4.9) the energy density ρdm = ρdm(z,ac,vc) is the dark matter energy density func-

tion, modified from the energy density introduced in chapter 2, and in this framework is a

function of the scale of transition, ac, and the initial velocity of the particle, vc. In order to

visualize the shape of eq.(4.9) we have plotted in figures 4.2 and 4.3, the heating rate evolu-

tion for some scenarios of our interest. First was plotted in figure 4.2 for Γcrit = 5.9 yr−1 and
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Figure 4.3: Using eq.(4.9) we show the effective heating parametrization varying Γχ =
[0.01,3] y−1, for vc = 0.01 (top) and vc = 0.71 (bottom) at ac = 2×10−6 (left), 1.25×10−6

(middle) and 5× 10−7 (right), this values are representative of the µ region [3.3×
10−6,4.9× 10−7]. In this plot was used Γcrit = [0.37,0.94,5.89] for the respective value
of ac considered.

ac = 5×10−7 (left), Γcrit = 36.8 yr−1 and ac = 1.99×10−7 (right) with vc = 0.01, Σχ = 10−4

and Γχ = 0.001Γcrit, 0.1Γcrit, Γcrit, 10Γcrit, 50Γcrit. Two types of curves are shown, first with

the eq.(4.9) completed (solid curve) and with Γcrit/Γχ ≡ 0 (dash-dotted curves). These curves

were plotted over a large range of scale factor, and they show how the maximal of the curves

arise inside or outside of µ region. Can also be seen in figure 4.2 the discrepancy between

the curves, when we take account the factor Γcrit/Γχ . Secondly, in figure 4.3 the heating rate

is shown for vc = 0.01 (top panel) and vc = 0.71 (bottom panel) with ac = 2× 10−6 (left),

1.25×10−6 (middle) and 5.25×10−6 (right) for Γχ = [0.01,3] yr−1. Notice that the redshift

or the scale factor was restricted approximately at the µ regimen (2×106 ≲ z ≲ 3×105). In

table 4.1 we show the values that we run for ac, vc, Γχ and Σχ , these were taken in order to

use the results at 1σ and 2σ reported in work [45], they run a Monte Carlo chain with Planck,

Supernova Ia and BAO data. For our purpose, we also restricted the values of ac to the µ red-

shift range, and vc was running for cold, warm, and hot dark particles. For the range of values

of Σχ we took the range constrained at work [34], in which they showed bounds at 95% on the
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parameter values ∆

Σχ [10−7, 10−3] 9×10−8

Γχ [0.01,3] yr−1 3×10−10 yr−1

vc [0.01,0.99] 2×10−3

ac
{

5×10−7,1.25×10−6,2×10−6}
Table 4.1: Several scenarios were computed for dark particle fraction decay Σχ , the parti-
cle decay rate Γχ , the velocity dispersion vc and the phase transition scale factor ac which
are shown in the left column. In the middle column, we defined all values run for each
parameter, and in the right column, we defined the numerical resolution ∆ for every pa-
rameter simulated.

decaying DM fraction as a function of the particle lifetime for PIXIE sensitivity, allowing for

µ and y distortion values of Σχ ≈ 10−2-10−7. In the next section we calculate SD for different

choices of parameter for the energy injection parametrization presented in this section.

4.3 Spectral distortions from QCD dark matter

We aim now to determine the observational features of µ and y SD in the QCD dark matter

scenario discussed in the previous section, whose features will soon be accessible to exper-

iments. With this goal in mind, we compute the magnitudes of these SD associated with

different choices of the main parameters of our model that were shown in table 4.1. The free

parameters of our model are: the dark particle fraction decay Σχ , the particle decay rate Γχ ,

the velocity dispersion vc, and the phase transition scale factor ac. For the benchmark values of

ac ∈ {2×10−6,1.25×10−6,5×10−7}, we found the values of Γcrit ∈ {0.37,0.94,5.89} yr−1

for (vc = 0.01) and Γcrit ∈ {0.43,1.10,6.88} yr−1 for (vc = 0.71). We computed µ and y SD

with eq.(3.18). First, we constrain µ and y for vc and Γχ/Γcrit. We display these results in the

heatmap scale on figure 4.4, for our three benchmark values ac = 2×10−6 (left), 1.25×10−6

(middle) and 5×10−7 (right), and fixed Σχ = 5×10−4 (for µ) and Σχ = 5×10−3 (for y).

By inspecting the heatmap values in the figure 4.4, we note that µ and y SD are similar for

every ac chosen. For µ and y was discard Γχ/Γcrit ≲ 0.06 (left), Γχ/Γcrit ≲ 0.02 (middle), and

Γχ/Γcrit ≲ 0.003 (right). Approximately, for every vc, we obtained the same µ and y distortion

for each parameter Γχ/Γcrit chosen in the range of 0 ≲ vc ≲ 0.71. We shade in gray the region

in parameter 0.71 < vc < 1 and this region SD was obtained with a divergent behavior when
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Figure 4.4: vc-dependence of Γχ/Γcrit on µ (top) and y (bottom) SD for different values of
ac = 2× 10−6 (left), 1.25× 10−6 (middle) and 5× 10−7 (right). A smaller value of Γχ/Γcrit

yields a larger SD. Some of the µ and y SD values are marked along the dark lines.
Results were obtained with Σχ = 5× 10−4 (for µ SD) and Σχ = 5× 10−3 (for y SD) fixed.
We have used the values: µfiras = 9×10−5 and yfiras = 1.5×10−5.

vc tends to 1.

In order to better appreciate the details of the SD and their dependence on Σχ , we now

consider a modulation of the particle decay rate Γχ . We display the predictions for µ (left)

and y (right) SD in the heatmap scale figure 4.5 for ac = 1.25× 10−6, for a corresponded

Γcrit = 0.94 and vc = 0.01 fixed. The results show an interesting behavior of SD when Γχ

is varied in the range 0.01 ≤ Γχ ≤ 3.0. For smaller Γχ/Γcrit, the larger the SD become for

the Σχ considered. From figure 4.5, we have found (approximately) the window of Σχ that

would be tested by PIXIE: 10−6 ≲ Σχ ≲ 5× 10−4 for µ , and 10−6 ≲ Σχ ≲ 5× 10−3 for y.

Aiming at the detectability in the QCD dark matter scenario, in figure 4.6 is displayed the SD

signal in the parameter space ν−∆I for vc ∈ {0.01,0.2,0.5,0.7}, Σχ ∈ {10−4,10−5,10−6} and

Γχ/Γcrit ∈ {1.06,0.53,3.18,6.36}. We see that the signals obtained, lead to a SD signal larger

than ΛCMD prediction, and it could be measured by PIXIE in the future.
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Figure 4.5: Σχ -dependence of Γχ/Γcrit on µ (left) and y (right) SD. A larger value of Σχ

yields a larger SD. In both cases, we have taken ac = 1.25×10−6 with Γcrit = 0.94. The µ , y
sensibility from PIXIE values and ΛCDM signal were marked along the dark lines. We have
used the values: µfiras = 9×10−5, µΛcdm = 2×10−8, yΛcdm = 4.5×10−9, µpixie = 5.2×10−8

and ypixie = 6.6×10−9.
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Figure 4.6: Predictions on the contribution to the distortion ∆I of the photon intensity
eq.(3.17) arising from µ and y SD in the QCD dark scenario. Here has been plotted a
several foretaste signals for different values of vc, Σχ and Γχ/Γcrit. We have compared all
signals obtained against the ΛCDM prediction gotten with the code CLASS.



Chapter 5

Spectral distortions from inflation

5.1 Axion monodromy model

Inflationary models based on axion monodromy [79; 80], on which we focus in this work, are

motivated by the appearance in different scenarios of axions equipped with a low-energy po-

tential that admits slow-roll over an extensive range in field space. For instance, in string com-

pactifications, axions are particularly abundant [81]. They arise, e.g., from dualizing gauge

fields over nontrivial cycles in the compact space of a string compactification or from integrat-

ing p-forms along p-cycles in type II strings.

Direct computations have shown that the canonically normalized fields associated with

such axions exhibit in the large-field limit a monomial potential compatible with slow-

roll [80; 82; 83]. These fields are super-Planckian but are naturally endowed with a sub-

Planckian periodicity arising from an underlying shift symmetry. If worldsheet instantons or

branes wrapping cycles are considered, this results in a small periodic modulation as a con-

tribution to the low-energy effective potential of the axion [80]. Similarly, from a purely

bottom-up perspective, axion monodromy can arise from a scenario where couplings between

an axion and a gauge field strength yield a monomial potential [84] and gauge instantons pro-

duce the periodic modulation. Independently of its origin, besides providing a viable scope

for large-field inflation, axion monodromy offers the appealing possibility of observable ten-

sor modes [85]. The distinct features of axion monodromy further allow one to inspect other
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possible observables for its signals in the cosmological history of our Universe.

In inflationary models based on axion monodromy, the potential energy of a canonically

normalized axion φ can be written as

V (φ) = V0(φ)+Λ
4 cos

(
φ

f
+ γ0

)
, (5.1)

where γ0 is a phase that is usually ignored (even though it naturally appears in this scenario and

has an important impact on the value of ns, as we discuss in section 5.4). Here, the amplitude of

the periodic modulation is given by the scale Λ related to the strong dynamics that give rise to

the potential, and f is the dimensionful decay parameter of the axion φ . In string constructions

that support slow-roll inflation, it is known that in the large-field regime, the potential V0(φ)

can adopt the monomial structure [86; 87]

V0(φ) ≈ λ
4−p

φ
p with p < 2 (5.2)

and a scale λ , which can be fixed by the amplitude As of the scalar primordial fluctuations.

Clearly, V0(φ) ̸= 0 breaks the axion shift symmetry φ → φ +2π f and induces a monodromy,

as the potential changes after each period. The potential (5.1) has been shown to be useful to

describe cosmological inflation, especially in scenarios with large tensor-to-scalar ratios [85]

(where recent observations favor small over large powers, see section 5.4). In this case, since

φ can interact during inflation with moduli before these achieve their stabilization, both the

oscillation amplitude and the axion decay parameter vary in general, i.e. Λ4 = Λ4(φ) and

f = f (φ). These dependencies induce a drift in the amplitude and in the oscillations, which

may leave an imprint on cosmological observations. In some string models, the frequency drift

can be expressed (at leading order in the slow-roll parameters) as [87]

f (φ) = f0

(
φ

φ⋆

)−p f

, (5.3)

where f0 is the standard axion decay constant, p f is a drift parameter that encodes the dynamics

of φ and moduli, and is adopted to be of order unity. Further, φ⋆ is the value of the field when
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the pivot scale k⋆ exits the horizon, i.e. such that for a fixed k⋆ the relation k⋆ = a(φ⋆)H(φ⋆)

is satisfied. We focus here on the main signature of models with axion monodromy, which is

the oscillatory behavior, considering that the periodic modulation is a small (nonperturbative)

contribution. Hence, we ignore the drift in Λ and assume that the modulation depends on a

small parameter b≪ 1 that relates Λ with the scale λ according to [88]

b :=
Λ4

V ′0(φ⋆) f (φ⋆)
=

Λ4

λ 4−p pφ
p−1
⋆ f0

. (5.4)

With these ingredients, using perturbation theory, one can solve the background equation of

motion for φ in the slow-roll regime and approximately linear potential, and then compute

via the Mukhanov-Sasaki equation the primordial scalar power spectrum at leading order in b

and in the limit1 f0φ⋆≪ p, ideal for observable non-Gaussianities [88]. The primordial scalar

power spectrum reads [86; 87]

PR(k) =As

(
k
k⋆

)ns−1
{

1+δns cos

[
φ⋆

f0

(
φk

φ⋆

)p f+1

+ϑ

]}
, (5.5)

where from slow-roll conditions is defined

φk ≈
√

2p
(

N0− ln
(

k
k⋆

))
with N0 := N⋆+φ

2
end/2p . (5.6)

Here, N⋆ is the number of e-folds fixed in the pivot scale2, φend ≈ p/
√

2 corresponds to the

value of the field at the end of slow-roll inflation. Thus, from eq.(5.6) we see that φ⋆≈
√

2pN0.

The amplitude of the oscillatory contribution to the power spectrum is given in this limit by

δns = 3b

√
2π

α
α := (p f +1)

φ⋆

2 f0N0

(√
2pN0

φ⋆

)p f+1

≈
p(p f +1)

f0 φ⋆
. (5.7)

Note that small b and f0φ⋆ ≪ p implies δns ≪ 1 too3. The amplitude of primordial power

1Our units are such that the reduced Planck mass is the unity, MPl = 1.
2In this chapter we taken Ntot ≡ N⋆, defined in eq.(2.55)
3this is an approximation from an exact analytic function shows in appendix B.2
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p φ⋆ φend 104λ ns r
2/3 8.77 0.47 14.4 0.977 0.046
1 10.75 0.71 5.85 0.974 0.069

4/3 12.42 0.94 1.78 0.971 0.092

Table 5.1: Approximate values of some parameters for our benchmark choices of p in
inflationary models based on axion monodromy. We consider k⋆ = 0.05Mpc−1 and N⋆ =
57.5. We take here the approximation V ≈V0 ∼ φ p. Both values for the inflaton field φ and
the scale λ are given in units of MPl. For completeness, we provide ns and r, which have
been computed using eq.(5.9) in this approximation. The tension of these results against
observable data is discussed in section 5.4.

spectrum is calculate with eq.(2.66), we find that in this limit

As ≈
V0

24π2εV0

∣∣∣∣
φ=φ⋆

=
λ 4−p

12π2 p2 φ
p+2
⋆ , (5.8)

which allows us to fit λ for different values of p by comparing with Planck’s best fit value [40,

table 1]. In table 5.1, we list the values of λ ,φ⋆ and φend for three benchmark choices of p

with fixed k⋆ = 0.05Mpc−1 and N⋆ = 57.5. As we are interested in the compatibility with

observations of inflation based on axion monodromy, it is useful to recall that for a model of

inflation characterized by the potential V (φ), the values of the scalar tilt ns and the tensor-to-

scalar ratio r are respectively given in terms of the slow-roll parameters by

ns = 1−6εV (φ⋆)+2ηV (φ⋆) and r = 16εV (φ⋆) , (5.9)

where εV and ηV are defined in eq.(2.54).

5.2 Damping of primordial small-scale perturbations

In the epoch of radiation domination, energy stored in small-scale density perturbations is

dissipated by the process Silk damping, this mechanism created spectral µ and y SD, this SD

directly depends on the shape and amplitude of the primordial power spectrum of curvature

perturbations, PR(k). An analytic approximation for the effective rate of energy release arising
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from the damping of adiabatic modes is given by (see [38] for details)

d
(
Q/ργ

)
dz

= 2C2
∫

∞

kmin

k4dk
2π2 PR(k)∂zk−2

D e−2k2/k2
D . (5.10)

Where kmin = 1 Mpc−1 and kD is diffusion scale given by [77]

k−2
D =

∫
∞

z
dz

(1+ z)
6H(1+R)NeσT

(
R2

1+R
+

16
15

)
, (5.11)

with R= 3ρb/ργ is the baryon-to-photon energy density ratio, and a good approximation of kD is

found in [38] as kD≈ 4.048×10−6(1+z)3/2 Mpc−1. Note that the appearance of the primordial

power spectrum PR(k), as defined in eq.(2.62), emphasizes an unavoidable bond between SD

and inflation, as the structure of PR(k) is defined by the inflationary process. For adiabatic

modes C2 ≈ (1+ 4Rν/15)−2 ≈ 0.813 is a normalization coefficient with 4Rν/15 accounting for

the correction due to the anisotropic stress in the neutrino fluid. Inserting eq.(5.10) in eq.(3.18)

and performing the integration over z, one arrives at a single integral expression for µ and y

SD in the k-space [28]

µ ≈
∫

∞

kmin

k2dk
2π2 PR(k)W µ(k) , (5.12a)

y≈
∫

∞

kmin

k2dk
2π2 PR(k)W y(k) . (5.12b)

Where W µ(k) and W y(k) are the so-called k-space window functions for the respective SD,

which account for the acoustic damping and thermalization effects, these are showed in ap-

pendix C.3.

The approximation in eqs.(5.12), is valid when the underlying model is similar to the

concordance model, which applies in particular for models based on axion monodromy with

parameters that comply with the constraints imposed by Planck data. Previous works have

shown that SD can place robust bounds on the amplitude of the primordial power spectrum

arising from various inflationary potentials (exhibiting peculiar features, such as bumps, kinks,

and discontinuities) [25; 27; 28; 73]. In the following we focus on the study of the SD produced

by inflationary models based on axion monodromy.
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Figure 5.1: Constraints at 68% C.L. for the axion decay constant f0 and the modulating
parameter b for p = 4/3 based on Planck’s data [70, fig. 32]. The shaded region has been
excluded. The heatmap refers to values of δns associated with (b, f0) according to eq.(5.7)
with our choice of p f = −0.7, N⋆ = 57.5 and φ⋆ = 12.38 MPl. Some of the δns values are
marked along the white lines.

5.3 Spectral distortions from axion monodromy

We aim now to determine the observational features of µ and y SD in the inflationary scenario

based on axion monodromy discussed in section 5.1, whose features could soon be accessible

to experiments. With this goal in mind, we compute the magnitudes of these SD associated

with different choices of the main parameters of our model. The free parameters of our model

are: the modulation b, the axion decay constant f0, the monomial power p, the oscillation

drifting power p f , and the phase ϑ , which we set to zero for simplicity. To compare with ob-

servations and previous results, we set the pivot scale to k⋆ = 0.05Mpc−1, and the number

of e-folds at that scale to N⋆ = 57.5, assuming instantaneous reheating. As discussed in sec-

tion 5.1, φ⋆, φend and λ can be determined from the previous free parameters and the observed

value of As, and δns is calculated via eq.(5.7). For the benchmark values of p ∈ {2/3,1,4/3},

we find the values displayed in table 5.1. For different choices of the free parameters, we
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Figure 5.2: µ (top) and y (bottom) SD in axion-monodromy inflation, computed via eq.3.17
in the (b, f0) parameter space. We explore here the region with 10−3 ≤ b ≤ 0.1 and 9×
10−4 ≤ f0 ≤ 0.01. We take our three benchmark values p = 2/3 (left), 1 (middle), p = 4/3

(right), and fixed p f =−0.7. The gray-shaded area corresponds to the region excluded by
Planck at 68% C.L. as shown in figure 5.1.

compute µ and y SD, eq.(5.12), using the primordial power spectrum for axion monodromy,

eq.(5.5). The parameter space that we explore is bounded to the following values

10−3 ≤ b≤ 0.1 , 9×10−4 ≤ f0 ≤ 0.01 , and −0.75≤ p f ≤ 1.0 . (5.13)

We adopt these values because they favor sizable SD while complying with all our priors.

In addition, as we will shortly discuss, this selection is found within the parameter window

explored by Planck. To achieve compatibility with observations we subject the parameters

to the bounds set by the Planck collaboration [70, section 7.4]. Planck established limits on

f0, p f and δns in axion monodromy models with p ∈ {2/3,1,4/3}. We translate through the

relation eq.(5.7) the bounds of f0 and δns to constraints on f0 as function of the modulation

parameter b, for fixed p and p f . Taking p = 4/3 and p f =−0.7 to maximize these bounds, we

show in figure 5.1 the (b, f0) region of parameter space that is consistent with Planck data at
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p = 2/3 p = 1 p = 4/3

108µ 2.011 1.956 1.908
109y 2.438 2.404 2.371

Table 5.2: Dominant predicted values of µ and y SD by inflationary models with axion
monodromy for a choice monomial powers p and fixed p f =−0.7.

68% C.L. We see that the admissible values lead to small δns, which justifies the blue color

in the heatmap scale. From [70, figure 32], we read off that the values of p f in our parameter

space eq.(5.13) are all allowed if the combination of (b, f0) is chosen to comply with figure

5.1. The constraints for p = 2/3 and 1 are similar but somewhat milder [70]. Hence, using

the restrictions of figure 5.1 for all our choices of p leads to a conservative scenario, where

results based on these constraints are compatible with observations. In figure 5.2 we display the

predictions of inflationary models based on axion monodromy for µ (top) and y (bottom) SD as

functions of the modulation amplitude b and the axion decay constant f0, for fixed p f =−0.7

and different values of p = 2/3 (left), 1 (middle) and 4/3 (right). We fix p f =−0.7 because this

value delivers the largest SD, as we shall shortly see. We shade in gray the region in parameter

space excluded by Planck, according to the bounds presented in figure 5.1. The predominantly

predicted values of SD (appearing in green) are given in table 5.2. By inspecting the heatmap

values in the figure, we note that arbitrary b and f0 only lead to SD values that differ by up to

1% with respect to the dominant predictions.

Based on the results displayed in figure 5.2, in order to better appreciate the details of the

SD and their dependence on p f , we consider now a choice of the axion decay constant f0 and

the modulation parameter b and vary p f . We present our results in figure 5.3 for f0 = 0.01. The

results show an interesting wave-damping behavior for the benchmark values of the monomial

power p = 2/3 (left panel), 1 (center panel) and p = 4/3 (right panel). For our selected value

of f0 we take the maximally allowed value b = 0.01 (blue for µ and green for y SD) and the

minimally explored value b = 5× 10−4 (red for µ and magenta for y SD). As expected from

eq.(5.5), smaller values of b lead to smaller SD. Note that the smaller p f is, the larger the SD

become. The central value (horizontal dashed line) represents the magnitude of the SD for a

standard power-law potential with b = 0 for each value of p. In average, for p f = −0.7 the

SD are 0.2% for µ and 0.7% for y larger than in the standard b = 0 case. The oscillatory
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Figure 5.3: p f -dependence of µ (top) and y (bottom) SD in models based on axion mon-
odromy for different values of p: p = 2/3 (left), p = 1 (middle) and p = 4/3 (right). A larger
value of the modulation parameter b yields larger SD, cf. eq.(5.5). As p f grows, the os-
cillatory behavior of SD in axion-monodromy models tends to the values of a standard
power-law potential with b = 0. We assume here a fixed axion decay constant, f0 = 0.01.

behavior of SD in axion monodromy tends to the central value for larger positive values of the

drifting power p f . Recalling that this parameter encodes the possible interactions between the

inflation axion and background moduli fields (or similar) of the full model if some dynamics

among such fields is left, variations of p f could happen and, hence the oscillatory behavior

displayed in figure 5.3 might be observable.

Let us now include the variation of the axion decay constant f0 in the scheme. We show in

figure 5.4 all predicted values of µ and y SD by axion-monodromy models. As before, we dis-

play on the top panels the values of the µ SD and in the bottom the values for y. Further, from

left to right, we show the results for p = 2/3,1 and 4/3. The heatmap allows us to appreciate the

effect on the SD of the variation of p f . An interesting observation is that choosing p f ≈ 1 or

small values of f0 lead to SD values that coincide with the central value obtained from a stan-

dard power-law potential (with b = 0). This implies a conservative theoretical bound for detec-

tion of SD due to axion monodromy, distinguishable from power law, at around f0 ≳ 4×10−3

and p f ≲ 0.2. Note that there are deviations from the central value of y SD for smaller f0; how-

ever, y SD are in general an order of magnitude smaller than µ SD and hence leave a much
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Figure 5.4: Values of µ (top) and y (bottom) SD as functions of the axion decay constant f0
and the frequency drift p f in inflationary models based on axion monodromy. We have set
the modulation parameter b = 0.01 and display the results for p = 2/3 (left), p = 1 (middle)
and p = 4/3 (right). For smaller values of f0 and/or values of p f close to unity, the results
from axion monodromy and standard power law with V ∼ φ p are very similar.

axion-monodromy SD power-law SD
p 108 max(µ) 109 max(y) 108µ 109y

2/3 2.0148 2.4545 2.0113 2.4376
1 1.9614 2.4118 1.9592 2.4039

4/3 1.9096 2.3852 1.9085 2.3708

Table 5.3: Comparison between the maximal values of SD in axion monodromy (with
b = 0.01) and power-law inflationary models (b = 0). The maximal values of µ SD occur
at p f = {−0.71,−0.72,−0.71} and of y at p f = {−0.66,−0.59,−0.74}, for p ∈ {2/3,1,4/3},
respectively. In all cases, we have taken f0 = 0.01 and b = 0.01.

weaker imprint in the SD signals. Aiming at the detectability of our scenario, we focus on

the parameter values that produce the largest SD signals and are compatible with Planck data.

By inspecting figure 5.2, 5.3 and 5.4, we realize that b = 0.01 = f0 and p f ≈−0.7 render the

most sizable signals. For each benchmark p value, we show the resulting maximal values of µ

and y SD in table 5.3. To establish a comparison with the standard power-law case (b = 0), we

also present in the table the SD values for all p values. We find small but important enhance-

ments of about 0.2− 0.7% in axion monodromy over the standard power-law scenario. To

conclude this section, we now address the question of whether the SD predictions associated

with inflationary models based on axion monodromy can be falsified by future observational
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data. With this goal in mind, first we compute the µ and y contributions to the distortions

of the photon intensity spectrum ∆I(ν), see eq.(3.17), and compare the results to the sensi-

tivity of the PIXIE experiment and its enhanced version Super-PIXIE. In figure 5.5 we plot

in the left the intensity in units of Jy/sr = 10−26 Wm−2Hz−1sr−1 for axion monodromy with

p = 2/3 (red dash-dotted curve), p = 1 (blue dotted), p = 4/3 (magenta dashed curve), and for

the ΛCDM model (black continuous curve). The latter is obtained from inserting the observed

values of ns = 0.96605±0.0042 [40, Table 1] and As in the standard primordial power spec-

trum, eq.(2.62), with αs = 0 and then computing the SD as in eq.(5.12). We observe that in

the range 55 ≲ ν ≲ 110 GHz axion monodromy would leave an observable SD signal whereas

SD from ΛCDM would not be detectable. Moreover, to quantify the difference between SD

from axion monodromy (am) and from ΛCDM, we compute |∆IΛCDM−∆Iam| and express this

difference on the right-hand side of figure 5.5 as a percentage of the ΛCDM result. We see

that they can differ by up to about 10% in the physically relevant region, ν ≲ 100 GHz and

ν ≳ 250 GHz. Interestingly, the greatest discrepancy, though marginal, is realized for axion

monodromy with p = 2/3.

A second important observation we need to study the falsifiability of axion monodromy

is the experimental error of future measurements of SD. As mentioned earlier, the expected

standard error of Super-PIXIE is given by σ(µ) ≃ 7.7× 10−9 and σ(y) ≃ 1.6× 10−9 [32;

37]. Unfortunately, our comparison in table 5.3 between power-law and axion monodromy

indicates that we need σ(µ),σ(y) ∼ 10−11 to distinguish between those two scenarios. This

can be achieved by the proposed configurations of PIXIE that shall enhance its sensitivity by

a factor of 100 [38].

5.4 Planck constraints on ns and r

Since axion monodromy is known to yield large tensor modes, current bounds on the spec-

tral tilt ns and the tensor-to-scalar ratio r are additional observables that can be used to fal-

sify inflationary models based on axion monodromy. In this section, we briefly revise the

status of the model on this topic. The latest Planck’s best-fit value for the spectral tilt is

ns = 0.96605± 0.0042 [40, Table 1], while the upper bound on the tensor-to-scalar ratio is
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Figure 5.5: Predictions on the contribution to the distortion ∆I of the photon intensity
eq.(3.17) arising from µ and y SD in axion monodromy inflationary models, contrasted
against the ΛCDM prediction. To explore the maximal size of the SD contributions from ax-
ion monodromy complying with Planck bounds, we take p f =−0.7, b= 0.01 and f0 = 0.01.
In the left, we display the three curves described for the benchmark values of monomial
power, p = 2/3 (red dash-dotted curve), p = 1 (blue dotted) and p = 4/3 (magenta dashed),
and the ΛCDM prediction (black continuous curve). We further show the sensitivity of fu-
ture PIXIE and Super PIXIE missions (curves adapted from [32, figure 9]). In the right,
we evaluate the difference between the axion-monodromy ∆Iam and ΛCDM ∆IΛCDM pre-
dicted intensities for the different benchmark p values. For frequencies outside the range
100GHz ≲ ν ≲ 250GHz the difference w.r.t. the fiducial signal is about 10%.

p γ0 φ⋆ φend 104λ ns r
2/3 2.00 8.78 0.67 14.38 0.965 0.046
1 2.78 10.77 0.99 5.85 0.965 0.069

4/3 4.54 12.38 0.01 1.79 0.965 0.093

Table 5.4: Improved parameters of axion-monodromy inflation with fixed values of b = f0 =
0.01, p f = −0.7, k⋆ = 0.05 Mpc−1 and N⋆ = 57.5. Both the inflaton field φ and the scale
λ are given in units of Planck mass. By varying the value of the phase γ0 (in radians)
in eq.(5.1), it is possible to successfully fit the spectral tilt ns while keeping the tensor-to-
scalar ratio r within the 3σ C.L. observed region, cf. table 5.1.

about r < 0.123 at 2σ based only on Planck’s TT,TE,EE+lowE+lensing data [40] (depicted

by the green contours of figure 5.6), and r < 0.048 at 3σ C.L. based on the latest combina-

tion of Planck’s data together with BICEP/Keck (BK18) and BAO data [61] (depicted by the

blue contours in figure 5.6). Disregarding the periodic modulation of axion monodromy, from

eq.(5.9) we find that the resulting single-field monomial potential yields

ns ≈ 1− (p+2)/2N0 and r ≈ 4p/N0 . (5.14)
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In this scenario, we note some (known) tension between the prediction of a model based on

V ∼ φ p and the observations. The values of ns and r for our benchmark values of N⋆ and

p ∈ {2/3,1,4/3} are presented in table 5.1. In the left plot of figure 5.6 we explore these results

for other admissible values of e-folds4 N⋆. The dumbbells in different colors illustrate the

values predicted by such simplified model with three different values of p. The small (large)

bullet corresponds to N⋆ = 50 (N⋆ = 60) e-folds and the star denotes our (arbitrarily chosen)

benchmark value N⋆ = 57.5, which is frequently used in the literature. In this approximated

model, ns is found within the 3σ region of the combined fit of Planck and BK18. However,

although r is within the 2σ region of Planck’s data, it lies beyond the 3σ C.L. region of the

latest combined data.

So far, we have set b = 0 and hence ignored the oscillatory modulation of axion mon-

odromy. Setting the small modulation parameter b ̸= 0 introduces important changes on the

predictions for ns and r. First, φ⋆, φend and N⋆ depend on b, f0,γ0 and p f besides p and can

only be computed numerically using an iterative approach. For fixed values of p,b, f0,γ0 and

p f , the value of φ⋆ has an oscillatory behavior. Consequently, also the values of ns and r os-

cillate. The spectral tilt oscillates in a wide range of values while N⋆ varies a little, depending

on p and the angle γ0 appearing in the potential eq.(5.1). The tensor-to-scalar ratio, on the

other hand, oscillates minimally, such that its value resembles the standard power-law result,

which only depends on p and N⋆. Interestingly, these properties pull ns and r closer to the ob-

served values. In the right plot of figure 5.6, we display all different values of ns and r for

50≤ N⋆ ≤ 60 and our three benchmark choices of p ∈ {2/3,1,4/3}, assuming fixed values5 of

b = f0 = 0.01 and p f = −0.7. The phase γ0 has been chosen independently for each p with

the goal of best fitting ns at N⋆ = 57.5 to the observed value; the stars in the plot correspond

to the values of ns and r that we obtain for p = 4/3 (top), 1 (middle) and 2/3 (bottom). We con-

clude that p≤ 2/3 and nontrivial phases γ0 lead to axion monodromy models compatible with

current Planck observations at 1σ , and at 3σ for Planck and BICEP/Keck 18 combined data.

4Note that various values of N⋆ can be associated with k⋆ = 0.05 Mpc−1 because N⋆ depends on many
other (undetermined) parameters, see e.g. [89, eq. (3.11)].

5The values of b, f0, p f are chosen to maximize the spectral distortions of the model, as we saw in
section 5.3.
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Figure 5.6: Predictions for ns and r from φ p (left) and axion monodromy inflation (right)
with 50 ≤ N⋆ ≤ 60 e-folds contrasted against the observational constraints from the CMB
Planck data in combination with baryon acoustic oscillation (BAO), CMB lensing data and
BICEP/Keck data. The (higher) green contours correspond to the 1σ and 2σ C.L. regions
based on Planck’s CMB data (TT,TE,EE+lowE) and lensing [40]. The (lower) blue con-
tours depict the 1σ , 2σ and 3σ C.L. regions resulting from combining the previous data
with BICEP/Keck 18 (BK18) and BAO data [61]. For axion monodromy (right), we used
the values of γ0 = 2.00 (p = 2/3), 2.78 (p = 1) and 4.54 (p = 4/3) in radians, which produce
the best fit for ns at N⋆ = 57.5. Labels on the right panel are the as in the left one.



Chapter 6

Summary and Conclusions

The ΛCDM is the concordance model of Cosmology and is in agreement with most of the

astrophysical and cosmological observations. However, we have presented in chapter 2, the

challenges that the CDM model needs to explain: first, the number of satellite galaxies around

the milky way is smaller than expected from ΛCDM numerical simulations. Second, the model

predicts steeply cuspy density profiles, causing a large fraction of haloes to survive as substruc-

tures inside larger haloes; both of these problems can be alleviated with a dark matter model

whose nature at early stages suppresses large-scale structure formation.

The inflationary paradigm is well-motivated because it provides a solution to the horizon

and flatness problems inherent to the Hot Big Bang cosmology. To test inflation, CMB SD has

demonstrated that it will be an important tool for upcoming observational probes.

The unprecedented precision of the forthcoming SD experiment naturally invites forecast-

ing and constrains dark matter and inflationary models. In this thesis, we have computed the

signal of CMB SD in two different scenarios: QCD dark matter and axion monodromy in-

flation. For both scenarios, we have presented the main equation for the parametrization of

the energy injection rates related, determined the observational features of µ and y SD, and

presented the main results in chapters 4 and 5.

In the QCD dark matter, results show an interesting behavior of the SD when Γχ was

varied in the range 0.01≤ Γχ ≤ 3.0. Figure 4.4 depicts that the smaller Γχ/Γcrit, the maximum

values were obtained for the benchmark values of Σχ . Figure 4.5 shows the µ (left) and y

(right) distortions computed value when the parameter space for the scale factor ac is explored
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with a marginalized vc = 0.01. We have constraint the value of Σχ in the range 0.01 ≤

Γχ ≤ 3.0, for smaller Γχ/Γcrit, that could be observationally constrained by PIXIE: 10−6 ≲

Σχ ≲ 5× 10−4 for µ and 10−6 ≲ Σχ ≲ 5× 10−3 for y distortions. The detectability of the

QCD dark matter scenario is shown in figure 4.6, in the parameter space ν −∆I for vc ∈

{0.01,0.2,0.5,0.7}, Σχ ∈ {10−4,10−5,10−6} and Γχ/Γcrit ∈ {1.06,0.53,3.18,6.36}. This last

plot shows that several scenarios of QCD dark matter considered in this work may be tested in

the future.

On the other hand, for axion monodromy inflation, we identified in section 5.3 some

values that maximize the resulting distortions for some benchmark models (with the pow-

ers p ∈ {2/3,1,4/3} of the monomial contribution to the inflationary potential), see tables 5.3

and 5.4.The main results are displayed in figures 5.2–5.5. Interestingly, accepting the possibil-

ity of a drifting axion decay parameter p f that varies during inflation, the resulting distortions

exhibit a wave-damping behavior, which may be observable. If the drifting does not vary and

develops a value p f ≲ −0.7, the associated SD become sizable. Beyond this feature, we find

that the distortions arising from axion monodromy are distinguishable from the most conser-

vative SD signal based on current ΛCDM observations, with up to 10% deviations with respect

to standard values in the observable frequency window, cf. figure 5.5.

On a less positive note, we find it challenging for future missions, such as PIXIE and Super

PIXIE, to discriminate between inflationary models based on a power-law potential and axion

monodromy. SD in axion monodromy with f0 ≳ 4×10−3 and p f ≲ 0.2 differ maximally from

the signal of a standard scenario based on a power-law potential. However, the difference is

just of order 1% or less. Consequently, one needs greater experimental accuracy than currently

achievable to notice such small discrepancies. We expect that this caveat shall be solved by

PIXIE setups capable of improving the sensitivity by at least 100 times, such as those already

proposed in [38].

A fully updated analysis of the SD in addition to other astrophysical and cosmological

signals from these models must be carried out. The current work represents a step towards this

goal. It would be interesting to also include extensions to the scenario studied here.
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A.1 The visible function Jµ(z) and Jy(z)

The visible function utilized in our SD calculation is gotten as the best-fitting approximation to

the distortion Green’s function using only µ and y distortion, and was taken from eq.(11a) and

eq.(11b) in work [16]. The shape of visible functions in the redshift range 2×106 ≲ z ≲ 103

are shown in figure 3. The approximation of visible function assume that the transition between

µ and y distortions is not abrupt at z≈ zµ .

Jµ(z) = exp

(
−
[

z
zth

]5/2
)[

1− exp

(
−
[

1+ z
1+ zµy

]1.88
)]

, (1a)

Jy(z) =

[
1+
(

1+ z
6×104

)2.58
]−1

. (1b)

Where zµ,y ≈ 5×104 and zth ≈ 1.98×106
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Figure 1: The visible function for µ and y SD in the redshift range 2×106 ≲ z ≲ 103.
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B.2 Analytic exact form of δns

The equation used in section 5.3 for δns is an approximation from an exact expression that is

established in eq.(3.25) in work [83], and has been plotted for p f = 1 in figure 2 (red curve) in

the range 10−5 ≲ f0 ≲ 10−1. The eq.(2) is valid for p f = 1 to first order in b and assumes the

slow roll condition.

δns =
12b√

1+(3 f0φ⋆)2

√
π

8
coth

(
π

2 f0φ⋆

)
f0φ⋆ (2)

Figure 2: The approximations (black curves) and exact analytic (red curve) shape for δns
are compared in the range 10−5 ≲ f0 ≲ 10−1 for p f = 1, black curves were plotted with
eq.(5.7) for p f = {−0.75,0,1}. The blue line shows the limit at which the approximation
ceases to be good f0 ≈ 1.
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C.3 The k-space window

The k-space window reduces the problem to a one-dimensional integral over k-space window

functions for the effective µ and y distortions. The approximations W i(k) (where i ∈ {y,µ})

are for the concordance cosmology, and were taken from eq.(24a) and eq.(24b) of work [28].

The shape of the k-space window in the wave number range 10−2 ≲ k ≲ 104 are shown in

figure 3, and mathematically is given by

W y(k)≈ C2

2
e−2k2/k2

D(zµ,y) , (3a)

W µ(k)≈ 2.8C2 exp

−
[

k̂
1360

]2

1+
[

k̂
260

]0.3
+
[

k̂
340

]
−5.6W y(k) . (3b)

Here zµ,y ≈ 5×104 and k̂ := k/kmin as the dimensionless momentum.
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Figure 3: The k-space window function for µ and y SD plotted from eq.(3) in the wave
number range 10−2 ≲ k ≲ 104.


